SIRT1 Inhibits Apoptosis by Promoting Autophagic Flux in Human Nucleus Pulposus Cells in the Key Stage of Degeneration via ERK Signal Pathway

Author:

He Fei1,Li Qingshu2,Sheng Bo3,Yang Haitao3,Jiang Wei1ORCID

Affiliation:

1. Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China

2. Department of Pathology, Chongqing Medical University, Chongqing 400010, China

3. Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China

Abstract

Background. The application of biomolecular interventions in the early stage of intervertebral disc degeneration (IVDD) is considered an ideal method for the treatment of IVDD. However, the precise definition of the “early stage” of IVDD is unclear. Silent information regulation 2 homologue-1 (SIRT1) can protect human degenerative nucleus pulposus (NP) cells from apoptosis by activating autophagy. However, the mechanism of this effect is still unclear. This study tried to confirm the “early stage” of IVDD and the role of NP cell autophagy during IVDD as well as to determine the mechanism by which SIRT1 protects NP cells. Methods. The characteristics of the NP in various stages of degeneration were assessed to confirm the “early stage” of IVDD. Then, autophagy and apoptosis were detected in NP cells after SIRT1 upregulation/downregulation. Finally, LY294002 and PD98059 were used to inhibit the AKT/ERK pathway to determine the mechanism by which SIRT1 regulates autophagy in NP cells. Results. Our data showed that mildly degenerative (Pfirrmann grade III with normal height of intervertebral disc) NP cells may be the key target for biomolecular interventions in IVDD and that SIRT1 protects human mildly degenerative NP cells from apoptosis by activating autophagy via the ERK signalling pathway. Conclusion. Our data showed that SIRT1 inhibits apoptosis by promoting the autophagic flux in NP cells via the ERK signalling pathway during the key stage of degeneration. These findings will assist in the development of novel therapeutic approaches for IVDD treatment.

Funder

Chongqing Medical University

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3