Multipurpose Drivers for MEMS Devices Based on a Single ASIC Implemented in a Low-Cost HV CMOS Process without a Triple Well

Author:

Miresan Paul1ORCID,Neag Marius1ORCID,Topa Marina1ORCID,Kovacs Istvan1ORCID,Varzaru Laurentiu2

Affiliation:

1. Technical University of Cluj-Napoca, Cluj-Napoca, Romania

2. Infineon Technologies, Bucharest, Romania

Abstract

This paper presents a novel topology for multipurpose drivers for MEMS sensors and actuators, suitable for integration in low-cost high-voltage (HV) CMOS processes, without a triple well. The driver output voltage, V MEMS , can be programmed over a wide, symmetrical range of positive and negative values, with the maximum output voltage being limited only by the maximum drain-source voltage that the HV transistors can handle. The driver is also able to short its output to the ground line and to leave it floating. It comprises generators for large positive and negative voltages followed by an LDO for each polarity that ensures that V MEMS has a well-controlled level and a very low ripple. The LDOs also help implement the grounded- and floating-output operating modes. Most of the required circuitry is integrated within a HV CMOS ASIC: the drivers for the large voltage generators, the error amplifiers of the LDOs, the DAC used to program the V MEMS level, and their support circuits. Thus, only the power stages of the large voltage generators, the pass transistors of the LDOs and two resistors for the LDO feedback network are discrete. A suitable configuration was devised for the latter that allows for the external resistor network to be shared by the two LDOs and prevents negative voltages from developing at the ASIC pins. Two circuit implementations of the proposed topology, designed in a low-cost 0.18 μm HV CMOS process, are presented in some detail. Simulation results demonstrate that they realize the required operating modes and provide V MEMS voltages programmable with steps of 100 mV or 200 mV, between -20 V and +20 V or between −45 V and +45 V, respectively. The output voltage ripple is relatively small, just 3.4 mVpkpk for the first implementation and 17 mVpkpk for the second. Therefore, both circuits are suitable for biasing and controlling a wide range of MEMS devices, including MEMS mirrors used in applications such as endoscopic optical coherence tomography.

Funder

European Regional Development Fund

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3