Diagenetic Modifications and Reservoir Heterogeneity Associated with Magmatic Intrusions in the Devonian Khyber Limestone, Peshawar Basin, NW Pakistan

Author:

Shah Mumtaz M.1ORCID,Afridi Saifullah1,Khan Emad U.12,Rahim Hamad Ur13ORCID,Mustafa Muhammad R.4ORCID

Affiliation:

1. Department of Earth Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan

2. Department of Geology, Abdul Wali Khan University, Mardan 23200, Pakistan

3. Earth Sciences Division, Pakistan Museum of Natural History, Islamabad 44000, Pakistan

4. Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia

Abstract

In the present study, an attempt has been made to establish the relationship between diagenetic alterations resulting from magmatic intrusions and their impact on the reservoir properties of the Devonian Khyber Limestone (NW Pakistan). Field observations, petrographic studies, mineralogical analyses, porosity-permeability data, and computed tomography were used to better understand the diagenetic history and petrophysical property evolution. Numerous dolerite intrusions are present in the studied carbonate successions, where the host limestone was altered to dolomite and marble, and fractures and faults developed due to the upwelling of the magmatic/hydrothermal fluids along pathways. Petrographic studies show an early phase of coarse crystalline saddle dolomite (Dol. I), which resulted from Mg-rich hydrothermal fluids originated from the dolerite dykes. Coarse crystalline marble formed due to contact metamorphism at the time of dolerite emplacement. The second phase of dolomitisation (Dol. II) postdates the igneous intrusions and was followed by dedolomitisation, dissolution, and cementation by meteoric calcite. Stable isotope studies likewise confirm two distinct dolomite phases. Dol. I exhibits more depleted δ18O (-15.8 to -9.1‰ V-PDB) and nondepleted δ13C (-2.05 to +1.85‰ V-PDB), whereas Dol. II shows a relatively narrow range of depleted δ18O (-13.9 to -13.8‰) signatures and nondepleted δ13C (+1.58 to +1.89‰ V-PDB). Dolomitic marble shows a marked depletion in δ18O and δ13C (-13.7 to -8.5‰ and -2.3 to 1.95‰, respectively). The initial phase of dolomitisation (Dol. I) did not alter porosity (5.4-6.6%) and permeability (0.0-0.1 mD) with respect to the unaltered limestone (5.6-6.9%; 0.1-0.2 mD). Contact metamorphism resulted in a decrease in porosity and permeability (3.3-4.7%; 0.1 mD). In contrast, an increase in porosity and permeability in Dol. II (7.7-10.5%; 0.8-2.5 mD) and dolomitic marble (6.6-14.7%; 8.2-13.3 mD) is linked to intercrystalline porosity and retainment of fracture porosity in dolomitic marble. Late-stage dissolution and dedolomitization also positively affected the reservoir properties of the studied successions. In conclusion, the aforementioned results reveal the impact of various diagenetic processes resulting from magmatic emplacement and their consequent reservoir heterogeneity.

Funder

University Research Fund

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3