Identifying and Labeling Potentially Risky Driving: A Multistage Process Using Real-World Driving Data

Author:

Marks Charles1ORCID,Jahangiri Arash2ORCID,Ghanipoor Machiani Sahar2ORCID

Affiliation:

1. Interdisciplinary Research on Substance Use Joint Doctoral Program, San Diego State University and the University of California San Diego, San Diego, CA, USA

2. Department of Civil, Construction, and Environmental Engineering, San Diego State University, San Diego, CA, USA

Abstract

Every year, over 50 million people are injured and 1.35 million die in traffic accidents. Risky driving behaviors are responsible for over half of all fatal vehicle accidents. Identifying risky driving behaviors within real-world driving (RWD) datasets is a promising avenue to reduce the mortality burden associated with these unsafe behaviors, but numerous technical hurdles must be overcome to do so. Herein, we describe the implementation of a multistage process for classifying unlabeled RWD data as potentially risky or not. In the first stage, data are reformatted and reduced in preparation for classification. In the second stage, subsets of the reformatted data are labeled as potentially risky (or not) using the Iterative-DBSCAN method. In the third stage, the labeled subsets are then used to fit random forest (RF) classification models—RF models were chosen after they were found to be performing better than logistic regression and artificial neural network models. In the final stage, the RF models are used predictively to label the remaining RWD data as potentially risky (or not). The implementation of each stage is described and analyzed for the classification of RWD data from vehicles on public roads in Ann Arbor, Michigan. Overall, we identified 22.7 million observations of potentially risky driving out of 268.2 million observations. This study provides a novel approach for identifying potentially risky driving behaviors within RWD datasets. As such, this study represents an important step in the implementation of protocols designed to address and prevent the harms associated with risky driving.

Funder

Safety through Disruption (Safe-D) National University Transportation Center

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3