Dynamic Characteristics and Key Parameter Optimization of Mechanical Automatic Vertical Drilling Tools

Author:

Wang Jin12ORCID,Hu Yuanbiao12ORCID,Liu Zhijian3ORCID,Li Lixin45ORCID,Liu Baolin12ORCID,Huang Leilei12ORCID

Affiliation:

1. School of Engineering and Technology, China University of Geosciences, Beijing 100083, China

2. Key Laboratory of Deep Geodrilling Technology, Ministry of Land and Resources, Beijing 100083, China

3. Beijing Institute of Mineral Exploration Engineering, Beijing 100083, China

4. Chinese Academy of Geological Sciences, Beijing 100037, China

5. China Deep Exploration Center, China Geological Survey, Chinese Academy of Geological Sciences, Beijing 100037, China

Abstract

Mechanical automatic vertical drilling tools (MAVDT) have gradually gained attention as a drilling tool that can achieve active correction in harsh working environments such as high temperature and high pressure. The gravity sensing mechanism can sense the deviation and convert the deviation signal into the control signal to drive the actuator to correct the deviation. It is the core component of the mechanical automatic vertical drilling tool. This paper analyzes the force on the gravity sensing mechanism based on the structural analysis of the mechanical automatic vertical drilling tool. Then, the general dynamic equation of the gravity sensing mechanism is established based on D’Alembert principle. The critical response position where the acceleration value is zero is used as the research object to complete the preliminary design and analysis of the sensing mechanism. Through analysis, it can be found that there is a conflict between the response accuracy and control stability of the gravity sensing mechanism. High response accuracy often means poor control stability. For the gravity sensing mechanism with definite structural parameters, there is a limit value of the allowable friction coefficient. When the friction coefficient of the thrust bearing exceeds the limit value, the gravity sensing mechanism cannot achieve the inclination response no matter how big the inclination angle and deflection angle are. The friction coefficient between the disc valves and the force between the disc valves of the gravity sensing mechanism have a linear effect on the performance of the mechanism, and the smaller the deviation angle, the greater the influence coefficient of the force or the friction coefficient between the disc valves on the length of the gravity sensing mechanism. During the process of dynamic swing, the dynamic stable position of the gravity sensing mechanism is related to the relative relationship between the restoring force of the mechanism and the friction damping. To be precise, it is related to the potential energy zero point and the speed zero point during the gravity sensing mechanism swing process before it reaches the dynamic stable position.

Funder

National Key R&D Program of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Reference21 articles.

1. The strap-down automatic vertical drilling system design and field applications;Q. Xue;Electronic Journal of Geotechnical Engineering,2012

2. Development of mechanical tool for automatic vertical drilling;L. Han;Acta Petrolei Sinica,2008

3. New concepts for vertical drilling of boreholes;J. Oppelt

4. Development of full rotation and push-the-bit type automatic vertical drilling tool;W. Wentao;China Petroleum Machinery,2015

5. New automatic vertical drilling system for high temperature, harsh environment and performance drilling applications;B. Comeaux

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3