A Parallel Bioinspired Algorithm for Chinese Postman Problem Based on Molecular Computing

Author:

Wang Zhaocai1,Bao Xiaoguang1,Wu Tunhua2ORCID

Affiliation:

1. College of Information, Shanghai Ocean University, Shanghai 201306, China

2. School of Information Engineering, Wenzhou Business College, Wenzhou 325035, China

Abstract

The Chinese postman problem is a classic resource allocation and scheduling problem, which has been widely used in practice. As a classical nondeterministic polynomial problem, finding its efficient algorithm has always been the research direction of scholars. In this paper, a new bioinspired algorithm is proposed to solve the Chinese postman problem based on molecular computation, which has the advantages of high computational efficiency, large storage capacity, and strong parallel computing ability. In the calculation, DNA chain is used to properly represent the vertex, edge, and corresponding weight, and then all possible path combinations are effectively generated through biochemical reactions. The feasible solution space is obtained by deleting the nonfeasible solution chains, and the optimal solution is solved by algorithm. Then the computational complexity and feasibility of the DNA algorithm are proved. By comparison, it is found that the computational complexity of the DNA algorithm is significantly better than that of previous algorithms. The correctness of the algorithm is verified by simulation experiments. With the maturity of biological operation technology, this algorithm has a broad application space in solving large-scale combinatorial optimization problems.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3