Wind Turbine Anomaly Identification Based on Improved Deep Belief Network with SCADA Data

Author:

Long Xiafei1,Li Shengqing12ORCID,Wu Xiwen3,Jin Zhao3

Affiliation:

1. School of Electrical and Information Engineering, Hunan University of Technology, Zhuzhou, Hunan 412007, China

2. Hunan Photovoltaic Smart Grid Control Engineering Research Center, Zhuzhou, Hunan 412007, China

3. Hunan New Energy Development Co., Ltd, Guodian Power, Changsha 410016, China

Abstract

This article presents a novel fault diagnosis algorithm based on the whale optimization algorithm (WOA)-deep belief networks (DBN) for wind turbines (WTs) using the data collected from the supervisory control and data acquisition (SCADA) system. Through the domain knowledge and Pearson correlation, the input parameters of the prediction models are selected. Three different types of prediction models, namely, the wind turbine, the wind power gearbox, and the wind power generator, are used to predict the health condition of the WT equipment. In this article, the prediction accuracy of the models built with these SCADA sample data is discussed. In order to implement fault monitoring and abnormal state determination of the wind power equipment, the exponential weighted moving average (EWMA) threshold is used to monitor the trend of reconstruction errors. The proposed method is used for 2 MW wind turbines with doubly fed induction generators in a real-world wind farm, and experimental results show that the proposed method is effective in the fault diagnosis of wind turbines.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3