Research on BOLD-fMRI Data Denoising Based on Bayesian Estimation and Adaptive Wavelet Threshold

Author:

Jian Zini1ORCID,Wang Xianpei1ORCID,Liu Xueting1,Tian Meng1ORCID,Wang Quande1,Xiao Jiangxi2

Affiliation:

1. Electronic Information School, Wuhan University, Wuhan 430072, China

2. Peking University First Hospital, Beijing 100034, China

Abstract

The acquisition of functional magnetic resonance imaging (fMRI) images of blood oxygen level-dependent (BOLD) effect and the signals to be analyzed is based on weak changes in the magnetic field caused by small changes in blood oxygen physiological levels, which are weak signals and complex in noise. In order to model and analyze the pathological and hemodynamic parameters of BOLD-fMRI images effectively, it is urgent to use effective signal analysis techniques to reduce the interference of noise and artifacts. In this paper, the noise characteristics of functional magnetic resonance imaging and the traditional signal denoising methods are analyzed. The Bayesian decision criterion takes into account the probability of the total occurrence of all kinds of references and the loss caused by misjudgment and has strong discriminability. So, an improved adaptive wavelet threshold denoising method based on Bayesian estimation is proposed. By using the correlation characteristics of multiscale wavelet coefficients, the corresponding wavelet components of useful signals and noises are processed differently; while retaining useful frequency information, the noise is weakened to the greatest extent. The new adaptive threshold wavelet denoising method based on Bayesian estimation is applied to the actual experiment, and the results of OEF (oxygen extraction fraction) are optimized. A series of simulation experiments are carried out to verify the effectiveness of the proposed method.

Funder

Science and Technology Planning Project of Hubei Province of China

Publisher

Hindawi Limited

Subject

Cell Biology,Ageing,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3