Fractal Characteristics and Acoustic Emission during the Failure Process of Argillaceous Siltstone with Different Moisture Contents

Author:

Song Haoran1ORCID,Li Shouyu1,Xu Jiachen1,Zhang Qingwen1ORCID,Zhi Yonghui23

Affiliation:

1. College of Civil Engineering, Southwest Forestry University, Kunming 650224, China

2. China Railway Development investment Group Co., Ltd., Kunming 650200, China

3. The 5th Engineering Co., Ltd. of China Railway 1 Bureau Group Corporation, Baoji 721006, China

Abstract

Compressive strength and tensile strength are the critical parameters to determine rock performance, which can reflect the rock’s resistance to deformation and damage. Brazilian indirect tensile and uniaxial compression tests were carried out on rocks under different water immersion conditions to study acoustic emission (AE) characteristics and crack propagation during rock fracture. The test results show that water has a deteriorating effect on the argillaceous siltstone, with significant attenuation of both compressive and tensile strengths. With the increase in moisture content, the number of AE events decreased, the cumulative AE ringing count showed a gradual rise in steps, and the proportion of AE peak frequencies in the range of 0-200 kHz gradually increased. Natural rock samples are more brittle than water-saturated rock samples. The higher frequency of AE events and the higher energy released during the destruction of natural rock samples reflect in the clustering of high-energy AE source locus near the main rupture surface. The AE source locus is 1-2 energy levels higher in the vicinity of the fracture surface than in the water-saturated rock samples. The rock samples exhibited random packing of mineral particles and contained many clay minerals by SEM analysis of fracture microstructure. Water dissolves mineral particles and cementitious materials, producing microcracks with propagation potential. Analysis of the AE time sequence based on fractal theory reveals that fractal dimension value varies with the increase of moisture content. The variation of the fractal dimension D values for the water-saturated rock samples ranges from 0.4 to 0.65. This indicates that the number of microcracks is higher and their propagation more complex when the moisture content of the specimen is higher. The failure characteristics of the rock samples in the above research can provide a reference for monitoring rock mass stability under tunnel water inflow.

Funder

China Railway Science and Technology Research and Development Program

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3