Affiliation:
1. Department of Communication Engineering, Jilin University, Changchun 130022, China
2. Department of Control Engineering, Changchun University of Technology, Changchun 130012, China
Abstract
A novel decentralized reinforcement learning robust optimal tracking control theory for time varying constrained reconfigurable modular robots based on action-critic-identifier (ACI) and state-action value function (Q-function) has been presented to solve the problem of the continuous time nonlinear optimal control policy for strongly coupled uncertainty robotic system. The dynamics of time varying constrained reconfigurable modular robot is described as a synthesis of interconnected subsystem, and continuous time state equation andQ-function have been designed in this paper. Combining with ACI and RBF network, the global uncertainty of the subsystem and the HJB (Hamilton-Jacobi-Bellman) equation have been estimated, where critic-NN and action-NN are used to approximate the optimalQ-function and the optimal control policy, and the identifier is adopted to identify the global uncertainty as well as RBF-NN which is used to update the weights of ACI-NN. On this basis, a novel decentralized robust optimal tracking controller of the subsystem is proposed, so that the subsystem can track the desired trajectory and the tracking error can converge to zero in a finite time. The stability of ACI and the robust optimal tracking controller are confirmed by Lyapunov theory. Finally, comparative simulation examples are presented to illustrate the effectiveness of the proposed ACI and decentralized control theory.
Funder
National Natural Science Foundation of China
Subject
General Engineering,General Mathematics
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献