Hybrid PolyLingual Object Model: An Efficient and Seamless Integration of Java and Native Components on the Dalvik Virtual Machine

Author:

Huang Yukun12,Chen Rong13,Wei Jingbo4,Pei Xilong1,Cao Jing3,Prakash Jayaraman Prem5,Ranjan Rajiv5

Affiliation:

1. Tongji University, Shanghai 200092, China

2. Jiangxi University of Finance and Economics, Nanchang 330029, China

3. Shanghai Kortide Century Technology, Shanghai 201203, China

4. Academy of Space Technology, Nanchang University, Nanchang 330031, China

5. CSIRO, Canberra, ACT 2601, Australia

Abstract

JNI in the Android platform is often observed with low efficiency and high coding complexity. Although many researchers have investigated the JNI mechanism, few of them solve the efficiency and the complexity problems of JNI in the Android platform simultaneously. In this paper, a hybrid polylingual object (HPO) model is proposed to allow a CAR object being accessed as a Java object and as vice in the Dalvik virtual machine. It is an acceptable substitute for JNI to reuse the CAR-compliant components in Android applications in a seamless and efficient way. The metadata injection mechanism is designed to support the automatic mapping and reflection between CAR objects and Java objects. A prototype virtual machine, called HPO-Dalvik, is implemented by extending the Dalvik virtual machine to support the HPO model. Lifespan management, garbage collection, and data type transformation of HPO objects are also handled in the HPO-Dalvik virtual machine automatically. The experimental result shows that the HPO model outweighs the standard JNI in lower overhead on native side, better executing performance with no JNI bridging code being demanded.

Funder

National Science and Technology Major Project

Publisher

Hindawi Limited

Subject

General Environmental Science,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3