Affiliation:
1. Department of Mechatronics, Ho Chi Minh City University of Technology and Education, Ho Chi Minh City, Vietnam
Abstract
The cable sagging problem of cable-driven parallel robots (CDPRs) is very complicated, because several models for calculating cable sag based on the well-known catenary equation have been studied, but time and computational efficiency are a problem to be solved. There is still no simple mathematical model to calculate cable sag by considering all relevant conditions due to the complexity and nonlinearity of the cable sagging model, which involves many dominant variables and their influence on the position accuracy of CDPRs. In this study, we proposed an ANFIS (adaptive neuro-fuzzy inference system) architecture to estimate cable sag for large-sized CDPRs. The ANFIS model can be used to solve nonlinear functions and detect nonlinear factors online in the control system; this characteristic is consistent with the nonlinear model of cable sag. The trained data for ANFIS models were taken from calculation results by Trust-Region-Dogleg algorithm based on two cable tension calculation algorithms as Dual Simplex Algorithm and Force Distribution in Closed Form. Cable sagging data obtained from ANFIS and Trust-Region-Dogleg algorithm are compared and evaluated by statistical factors of evaluations consisting of root-mean-square error, correlation coefficients, and scatter index. The analytical results show that the ANFIS gave computed results with small errors and can be applied to predict cable sagging for any CDPR configuration, with the advantage of fast calculation time and high precision. The results of these models are also applied on a CDPR that contains two redundant actuators.
Subject
General Engineering,General Mathematics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献