Spatial Transformer Network-Based Automatic Modulation Recognition of Blind Signals

Author:

Huang Yuxin1ORCID

Affiliation:

1. School of Electronic and Electrical Engineering, Minnan University of Science and Technology, Quanzhou 362700, Fujian, China

Abstract

Modulation recognition of communication signals plays an important role in both civil and military uses. Neural network-based modulation recognition methods can extract high-level abstract features which can be adopted for classification of modulation types. Compared with traditional recognition methods based on manually defined features, they have the advantage of higher recognition rate. However, in actual modulation recognition scenarios, due to inaccurate estimation of receiving parameters and other reasons, the input signal samples for modulation recognition may have large phase, frequency offsets, and time scale changes. Existing deep learning-based modulation recognition methods have not considered the influences brought by the above issues, thus resulting in a decreased recognition rate. A modulation recognition method based on the spatial transformation network is proposed in this paper. In the proposed network, some prior models for synchronization in communication are introduced, and the priori models are realized through the spatial transformation subnetwork, so as to reduce the influence of phase, frequency offsets, and time scale differences. Experiments on simulated datasets prove that compared with the traditional CNN, ResNet, and the CLDNN, the recognition rate of the proposed method has increased by 8.0%, 5.8%, and 4.6%, respectively, when the signal-to-noise ratio is greater than 0. Moreover, the proposed network is also easier to train. The training time required for convergence has reduced by 4.5% and 80.7% compared to the ResNet and CLDNN, respectively.

Funder

2020 Science and Technology Project of Quanzhou City

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3