On the 5G Communications: Fractal-Shaped Antennas for PPDR Applications

Author:

Nichita Mihai-Virgil1ORCID,Paun Maria-Alexandra2ORCID,Paun Vladimir-Alexandru3ORCID,Paun Viorel-Puiu45ORCID

Affiliation:

1. Doctoral School, Faculty of Applied Sciences, University Politehnica of Bucharest, 313 Splaiul Independentei, Sector 6, Bucharest RO-060042, Romania

2. School of Engineering, Swiss Federal Institute of Technology (EPFL), Route Cantonale, Lausanne 1015, Switzerland

3. Five Rescue Research Laboratory, 35 Quai d’Anjou, Paris 75004, France

4. Physics Department, Faculty of Applied Sciences, University Politehnica of Bucharest, 313 Splaiul Independentei, Sector 6, Bucharest RO-060042, Romania

5. Academy of Romanian Scientists, 54 Splaiul Independentei, Sector 5, Bucharest RO-050094, Romania

Abstract

In this study, one method of using antennas based on fractals to cover few kinds of public protection and disaster relief (PPDR) communications was presented. Dedicated antenna forms, necessary for antenna design by 5G implementation, were enhanced to suit the requirements of specific applications. Employing fractal-shaped antennas have allowed us to accomplish all these actions, which request compact, conformal, and broadband high performance devices. Antennas derived from Koch’s curve fractals are studied. In order to implement PPDR communications in 5G technology, frequency bandwidths of importance have been carefully selected and properly included in the antenna developments under MATLAB environment. Important information necessary for antenna designers, such as 360 degrees directivity at various frequencies, the impedance (resistance and reactance) along the bandwidth of interest, as well as voltage standing wave ratio (VSWR) along the bandwidth of interest for dipole, one-iteration, and two-iteration Koch’s curves, respectively, have been obtained. The characteristic of directivity at selected frequencies is also highlighted. In order to maximize antenna parameters, this study has successfully proposed using fractal antennas, objects that use self-similarity property of fractals for optimum operation in several frequency ranges. For the studied antennas, we have obtained the following results regarding the maximum gains in dBi (which is the unit of the ratio between the gains of the antenna compared to the gain of an isotropic antenna). For the dipole antennas, the gains are 2.73 dBi and 4.76 dBi at 460 MHz and 770 MHz, respectively. The gains for one-iteration fractal Koch antenna are 6.91 dBi and 4.51 dBi at 460 MHz and 770 MHz, respectively, and finally, for two-iteration fractal Koch antenna, the gains are 4.91 dBi and 3.28 dBi at 460 MHz and 770 MHz, respectively. Moreover, the impedance along the bandwidth is approximately 360 Ohms for two-iteration fractal Koch antenna, 180 Ohms for one-iteration fractal Koch antenna, and 140 Ohms for dipole antenna, respectively.

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3