Silencing of Angiopoietin-Like Protein 4 (Angptl4) Decreases Inflammation, Extracellular Matrix Degradation, and Apoptosis in Osteoarthritis via the Sirtuin 1/NF-κB Pathway

Author:

Jia Chao123,Li Xiucui24,Pan Jun123,Ma Haiwei123,Wu Dengying12,Lu Hongwei123,Wang Wei12ORCID,Zhang Xutong125ORCID,Yi Xianhong12ORCID

Affiliation:

1. Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China

2. The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325027 Zhejiang Province, China

3. Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, China

4. Department of Neonatology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325027 Zhejiang Province, China

5. Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China

Abstract

Osteoarthritis (OA) is a frequently observed condition in aged people. OA cartilage is characterized by chondrocyte apoptosis, chondrocyte inflammation, and hyperactive catabolism of extracellular matrix. However, the specific molecular mechanisms remain unclear. Recent data has shown that Angptl4, a multifunctional cytokine, is involved in the regulation of inflammatory and apoptosis responses in different tissues. This study is aimed at defining the role of Angptl4 in the development of OA. We employed X-ray analysis, safranin O-fast green (S-O) staining, and hematoxylin staining to evaluate histomorphological characteristics in the knee joint of mice. Real-time quantitative polymerase chain reaction, Western blot assays, immunofluorescence staining, and enzyme-linked immunosorbent assays (ELISA) were performed to analyze the changes in gene and protein expression. Mechanically, our data demonstrated that Angptl4 knockdown improved the degradation of extracellular matrix and reduced TNF-α-mediated chondrocyte inflammation and apoptosis by suppressing sirtuin 1/NF-κB signaling pathway. In addition, animal studies showed that the suppression of Angptl4 expression might alleviate OA development. In conclusion, our findings revealed the underlying mechanisms of Angptl4 regulation in chondrocytes and its potential value in the treatment of OA.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3