Affiliation:
1. University of Information Technology, Vietnam National University, Ho Chi Minh City, Vietnam
Abstract
Small object detection is an interesting topic in computer vision. With the rapid development in deep learning, it has drawn attention of several researchers with innovations in approaches to join a race. These innovations proposed comprise region proposals, divided grid cell, multiscale feature maps, and new loss function. As a result, performance of object detection has recently had significant improvements. However, most of the state-of-the-art detectors, both in one-stage and two-stage approaches, have struggled with detecting small objects. In this study, we evaluate current state-of-the-art models based on deep learning in both approaches such as Fast RCNN, Faster RCNN, RetinaNet, and YOLOv3. We provide a profound assessment of the advantages and limitations of models. Specifically, we run models with different backbones on different datasets with multiscale objects to find out what types of objects are suitable for each model along with backbones. Extensive empirical evaluation was conducted on 2 standard datasets, namely, a small object dataset and a filtered dataset from PASCAL VOC 2007. Finally, comparative results and analyses are then presented.
Funder
Vietnam National University, HoChiMinh City (VNU-HCM),
Subject
Electrical and Electronic Engineering,General Computer Science,Signal Processing
Cited by
139 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献