A WeChat-Based System of Real-Time Monitoring and Alarming for Power Grid Operation Status under Virtual Private Cloud Environment

Author:

Lian Chunjie1ORCID,Wei Hua1,Bai Xiaoqing1ORCID,Lyu Zhongliang1

Affiliation:

1. Guangxi Key Laboratory of Power System Optimization and Energy Technology, Guangxi University, Nanning 530004, Guangxi, China

Abstract

The existing power grid alarm system using SMS (SMSAS) is complex and suffers some problems such as high latency in data transmission, low reliability, and poor economy. For solving these problems, this paper proposes a WeChat-based system under the virtual private cloud environment to achieve real-time monitoring and alarming for the power grid operation status (WMAS). For WMAS, the WeChat mini program (WMP) is adopted, and it has the dedicated data channel using the Https protocol, which is set up in the WMP and the web API to encrypt the data content to ensure the integrity of the data. Combined with virtual private cloud technology, the hardware resources are virtualized, and the proposed system has strong disaster recovery capability, which significantly improves the flexibility and reliability of the system. Compared with SMSAS, our simulation shows that the time from sending to receiving the information in the proposed system is reduced from 4.9 seconds to 172 milliseconds, with the latency reduced by 28 times. On the contrary, the reliability of the proposed system is as high as 99.9971%, and the annual failure time is 15.24 minutes, which is 380 times lower than 96.51 hours of the SMSAS. The proposed system has been implemented in the Lipu power system in Guangxi, China. More than one year of stable operation indicates that the proposed system is safe, reliable, flexible, and convenient with a bright prospect for future applications.

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Visual monitoring system for operation and maintenance of converter station based on sensor fusion;2024 International Conference on Power Electronics and Artificial Intelligence;2024-01-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3