Hydrologic Time Series Anomaly Detection Based on Flink

Author:

Ye Feng1ORCID,Liu Zihao2ORCID,Liu Qinghua2ORCID,Wang Zhijian1ORCID

Affiliation:

1. School of Computer and Information, Hohai University, Nanjing, China

2. School of Computer, Jiangsu University of Science and Technology, Zhenjiang, China

Abstract

The data mining and calculation of time series in critical application is still worth studying. Currently, in the field of hydrological time series, most of the detection of outliers focus on improving the specificity. To efficiently detect outliers in massive hydrologic sensor data, an anomaly detection method for hydrological time series based on Flink is proposed. Firstly, the sliding window and the ARIMA model are used to forecast data stream. Then, the confidence interval is calculated for the prediction result, and the results outside the interval range are judged as alternative anomaly data. Finally, based on the historical batch data, the K-Means++ algorithm is used to cluster the batch data. The state transition probability is calculated, and the anomaly data are evaluated in quality. Taking the hydrological sensor data obtained from the Chu River as experimental data, experiments on the detection time and outlier detection performance are carried out, respectively. The results show that when calculating the tens of millions of data, the time costed by two slaves is less than that by one slave, and the maximum reduction is 17.43%. The sensitivity of the evaluation is increased from 72.91% to 92.98%. In terms of delay, the average delay of different slaves is roughly the same, which is maintained within 20 ms. It shows that, under big data platform, the proposed algorithm can effectively improve the computational efficiency of hydrologic time series detection for tens of millions of data and has a significant improvement in sensitivity.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3