The Effect of Nuclear Elastic Scattering on Temperature Equilibration Rate of Ions in Fusion Plasma

Author:

Mahdavi M.1,Azadifar R.1,Koohrokhi T.2

Affiliation:

1. Physics Department, University of Mazandaran, P.O. Box 47415-416, Babolsar, Iran

2. Physics Department, Faculty of Sciences, Golestan University, Shahid Beheshti Street, P.O. Box 155, Gorgan, Iran

Abstract

A plasma with two different particle types and at different temperatures has been considered, so that each type of ion with Maxwell-Boltzmann distribution function is in temperature equilibrium with itself. Using the extracted nuclear elastic scattering differential cross-section from experimental data, solving the Boltzmann equation, and also taking into account the mobility of the background particles, temperature equilibration rate between two different ions in a fusion plasma is calculated. The results show that, at higher temperature differences, effect of nuclear elastic scattering is more important in calculating the temperature equilibration rate. The obtained expressions have general form so that they are applicable to each type of particle for background (b) and each type for projectile (p). In this paper, for example, an equimolar Deuterium-Hydrogen plasma with densityn=5×1025 cm−3is chosen in which the deuteron is the background particle with temperature (also electron temperature)Tb=1 keV (usual conditions for a fusion plasma at the ignition instant) and the proton is the projectile with temperatureTp>Tb. These calculations, particularly, are very important for ion fast ignition in inertial confinement fusion concept.

Publisher

Hindawi Limited

Subject

Nuclear and High Energy Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Power deposition of deuteron beam in fast ignition;Modern Physics Letters A;2017-01-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3