Multiview Volume and Temporal Difference Network for Angle-Closure Glaucoma Screening from AS-OCT Videos

Author:

Hao Luoying1ORCID,Hu Yan1ORCID,Higashita Risa2ORCID,J. Q. Yu James1ORCID,Zheng Ce3ORCID,Liu Jiang145ORCID

Affiliation:

1. Department of Computer Science and Engineering, Southern University of Science and Technology, 518055 Shenzhen, China

2. Tomey Corporation, 451-0051 Nagoya, Japan

3. Department of Ophthalmology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China

4. School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Zhejiang, China

5. Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology, 518055 Shenzhen, China

Abstract

Background. Precise and comprehensive characterizations from anterior segment optical coherence tomography (AS-OCT) are of great importance in facilitating the diagnosis of angle-closure glaucoma. Existing automated analysis methods focus on analyzing structural properties identified from the single AS-OCT image, which is limited to comprehensively representing the status of the anterior chamber angle (ACA). Dynamic iris changes are evidenced as a risk factor in primary angle-closure glaucoma. Method. In this work, we focus on detecting the ACA status from AS-OCT videos, which are captured in a dark-bright-dark changing environment. We first propose a multiview volume and temporal difference network (MT-net). Our method integrates the spatial structural information from multiple views of AS-OCT videos and utilizes temporal dynamics of iris regions simultaneously based on image difference. Moreover, to reduce the video jitter caused by eye movement, we employ preprocessing to align the corneal part between video frames. The regions of interest (ROIs) in appearance and dynamics are also automatically detected to intensify the related informative features. Results. In this work, we employ two AS-OCT video datasets captured by two different devices to evaluate the performance, which includes a total of 342 AS-OCT videos. For the Casia dataset, the classification accuracy for our MT-net is 0.866 with a sensitivity of 0.857 and a specificity of 0.875, which achieves superior performance compared with the results of the algorithms based on AS-OCT images with an obvious gap. For the Zeiss AS-OCT video dataset, our method also gets better performance against the methods based on AS-OCT images with a classification accuracy of 0.833, a sensitivity of 0.860, and a specificity of 0.800. Conclusions. The AS-OCT videos captured under changing environments can be a comprehended means for angle-closure classification. The effectiveness of our proposed MT-net is proved by two datasets from different manufacturers

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3