Development for Multisensor and Virtual Simulator–Based Automatic Broadcast Shooting System

Author:

Lee Wonjun1,Lim Hyung-Jun1,Kim Mun Sang1ORCID

Affiliation:

1. School of Integrated Technology, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea

Abstract

To solve the limitations of complexity and repeatability of existing broadcast filming systems, a new broadcast filming system was developed. In particular, for Korean music broadcasts, the shooting sequence is stage and lighting installation, rehearsal, lighting effect production, and main shooting; however, this sequence is complex and involves multiple people. We developed an automatic shooting system that can produce the same effect as the sequence with a minimum number of people as the era of un-tact has emerged because of COVID-19. The developed system comprises a simulator. After developing a stage using the simulator, during rehearsal, dancers’ movements are acquired using UWB and two-dimensional (2D) LiDAR sensors. By inserting acquired movement data in the developed stage, a camera effect is produced using a virtual camera installed in the developed simulator. The camera effect comprises pan, tilt, and zoom, and a camera director creates lightning effects while evaluating the movements of virtual dancers on the virtual stage. In this study, four cameras were used, three of which were used for camera pan, tilt, and zoom control, and the fourth was used as a fixed camera for a full shot. Video shooting is performed according to the pan, tilt, and zoom values ​​of the three cameras and switcher data. Only the video of dancers recorded during rehearsal and that produced by the lighting director via the existing broadcast filming process is overlapped in the developed simulator to assess lighting effects. The lighting director assesses the overlapping video and then corrects parts that require to be corrected or emphasized. The abovementioned method produced better lighting effects optimized for music and choreography compared to existing lighting effect production methods. Finally, the performance and lighting effects of the developed simulator and system were confirmed by shooting using K-pop using the pan, tilt, and zoom control plan, switcher sequence, and lighting effects of the selected camera.

Funder

GIST Research Project

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Media Technology,Communication

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3