A Hybrid Time-Frequency Analysis Method for Railway Rolling-Element Bearing Fault Diagnosis

Author:

Cheng Yao1ORCID,Zou Dong1ORCID,Zhang Weihua1,Wang Zhiwei1

Affiliation:

1. State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, China

Abstract

The health condition of rolling-element bearings is important for machine performance and operating safety. Due to external interferences, the impulse-related fault information is always buried in the raw vibration signal. To solve this problem, a hybrid time-frequency analysis method combining ensemble local mean decomposition (ELMD) and the Teager-Kaiser energy operator (TKEO) is proposed for the fault diagnosis of high-speed train bearings. The ELMD method is a significant improvement over local mean decomposition (LMD) for addressing the mode-mixing problem. The TKEO method is effective for separating amplitude-modulated (AM) and frequency-modulated (FM) signals from a raw signal. But it is only valid for monocomponent AM-FM signals. The proposed time-frequency method integrates the advantages of ELMD and TKEO to detect localized defects in rolling-element bearings. First, a raw signal is decomposed into an ensemble of PFs and a residual component using ELMD. A novel sensitive parameter (SP) is introduced to select the sensitive PF that contains the most fault-related information. Subsequently, the TKEO is applied to extract both the amplitude and frequency modulations from the selected PF. The experimental results of rolling element and outer race fault signals confirmed that the proposed method could effectively recover fault information from raw signals contaminated by strong noise and other interferences.

Funder

Southwest Jiaotong University

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3