A New Theoretical Approach: A Model Construct for Fault Troubleshooting in Cloud Computing

Author:

Alkasem Ameen1ORCID,Liu Hongwei1,Shafiq Muhammad1ORCID,Zuo Decheng1

Affiliation:

1. School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China

Abstract

In cloud computing, there are four effective measurement criteria: (I) priority, (II) fault probability, (III) risk, and (IV) the duration of the repair action determining the efficacy of troubleshooting. In this paper, we propose a new theoretical algorithm to construct a model for fault troubleshooting; we do this by combining a Naïve-Bayes classifier (NBC) with a multivalued decision diagram (MDD) and influence diagram (ID), which structure and manage problems related to unambiguous modeling for any connection between significant entities. First, the NBC establish the fault probability based on a Naïve-Bayes probabilistic model for fault diagnosis. This approach consists of three steps: (I) identifying the network parameters to also show the reliance for probability relationship among the entire set of nodes; (II) determining the structure of the network topology; (III) assessing the probability of the fault being propagated. This calculates the probability of each node being faulty given the evidence. Second, the MDD combines the influential factors of four measurements and determines the utility value of prioritizing their actions during each step of the fault troubleshooting which in turn assesses which fault is selected for repair. We demonstrate how the procedure is adapted by our method, with the host server’s failure to initiate a case-study. This approach is highly efficient and enables low-risk fault troubleshooting in the field of cloud computing.

Funder

Chinese High Tech R&D

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CloudPT: Performance Testing for Identifying and Detecting Bottlenecks in IaaS;Algorithms and Architectures for Parallel Processing;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3