Affiliation:
1. Department of Mathematics, Payeme Noor University, Iran
Abstract
Operating room (OR) surgery scheduling is a challenging combinatorial optimization problem that determines the operation start time of every surgery to be performed in different surgical groups, as well as the resources assigned to each surgery over a schedule period. One of the main challenges in health care systems is to deliver the highest quality of care at the lowest cost. In real-life situations, there is significant uncertainty in several of the activities involved in the delivery of surgical care, including the duration of the surgical procedures. This paper tackles the operating room surgery scheduling problem with uncertain surgery durations, where uncertainty in surgery durations is represented by means of fuzzy numbers. The problem can be considered as a Fuzzy Flexible Job-shop Scheduling Problem (FFJSP) due to similarities between operating room surgery scheduling with uncertain surgery durations and a multi-resource constraint flexible job-shop scheduling problem with uncertain processing times. This research handles both the advanced and allocation scheduling problems simultaneously and provides an Ant Colony Optimization (ACO) metaheuristic algorithm which utilized a two-level ant graph to integrate sequencing jobs and allocating resources at the same time. To assess the performance of the proposed method, a computational study on five test surgery cases is presented, considering both deterministic and fuzzy surgery durations to enhance the significance of the study. The results of this experiment demonstrated the effectiveness of the proposed metaheuristic algorithm.
Funder
National Research Foundation of Korea
Subject
Management Science and Operations Research
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献