Affiliation:
1. Hubei Research Center for Language and Intelligent Information Processing, Wuhan University, Wuhan 430072, China
Abstract
As one of the core tasks in the field of natural language processing, syntactic analysis has always been a hot topic for researchers, including tasks such as Questions and Answer (Q&A), Search String Comprehension, Semantic Analysis, and Knowledge Base Construction. This paper aims to study the application of deep learning and neural network in natural language syntax analysis, which has significant research and application value. This paper first studies a transfer-based dependent syntax analyzer using a feed-forward neural network as a classifier. By analyzing the model, we have made meticulous parameters of the model to improve its performance. This paper proposes a dependent syntactic analysis model based on a long-term memory neural network. This model is based on the feed-forward neural network model described above and will be used as a feature extractor. After the feature extractor is pretrained, we use a long short-term memory neural network as a classifier of the transfer action, and the characteristics extracted by the syntactic analyzer as its input to train a recursive neural network classifier optimized by sentences. The classifier can not only classify the current pattern feature but also multirich information such as analysis of state history. Therefore, the model is modeled in the analysis process of the entire sentence in syntactic analysis, replacing the method of modeling independent analysis. The experimental results show that the model has achieved greater performance improvement than baseline methods.
Subject
Computer Science Applications,Software
Reference25 articles.
1. Query Understanding Enhanced by Hierarchical Parsing structures;J. Liu
2. Assessing the impact of syntactic and semantic structures for answer passages reranking;K. Tymoshenko
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献