A Cell Component-Related Prognostic Signature for Head and Neck Squamous Cell Carcinoma Based on the Tumor Microenvironment

Author:

Li Siyu12ORCID,Gu Yajun12ORCID,Wang Junguo12ORCID,Ma Dengbin12ORCID,Qian Xiaoyun12ORCID,Gao Xia12ORCID

Affiliation:

1. Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Jiangsu Provincial Key Medical Discipline (Laboratory), No. 321 Zhongshan Road, Nanjing 210008, China

2. Research Institute of Otolaryngology, No. 321 Zhongshan Road, Nanjing 210008, China

Abstract

Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous disease with a high mortality rate. The tumor microenvironment (TME) is composed of numerous noncancerous cells that contribute to tumorigenesis and prediction of therapeutic effects. In this study, we aimed to develop a cell component-related prognostic model based on TME. We screened cell component enrichments from samples in The Cancer Genome Atlas (TCGA) HNSCC cohort using the xCell algorithm. Univariate Cox and multivariate Cox regression analyses were performed to establish an optimal independent risk model. The prognostic value of the model was further validated using Gene Expression Omnibus datasets. We found that patients in the low-risk group had a better outcome and activated immunity and may benefit more from the immune checkpoint inhibitor therapy. We also explored microRNAs (miRNAs) that may regulate these identified cell components, and 11 miRNA expression levels influenced the overall survival time. Moreover, their target mRNAs were differentially expressed in TCGA cohort and enriched in pathways of cell cycle pathways, extracellular matrix receptor interaction, human papillomavirus infection, and cancer. In summary, our cell component-related signature was a promising prognostic biomarker that provides new insights into the predictive value of nontumor components in the TME.

Funder

Project of Invigorating Health Care through Science, Technology and Education

Publisher

Hindawi Limited

Subject

Pharmaceutical Science,Genetics,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3