Evaluating Subpixel Target Detection Algorithms in Hyperspectral Imagery

Author:

Cohen Yuval1,August Yitzhak1,Blumberg Dan G.2,Rotman Stanley R.3

Affiliation:

1. The Unit of Electro-Optics Engineering and the Earth and Planetary Image Facility, Ben-Gurion University of the Negev, P.O. Box 653, 84105 Beer-Sheva, Israel

2. The Department of Geography and Environmental Development and the Earth and Planetary Image Facility, Ben-Gurion University of the Negev, P.O. Box 653, 84105 Beer-Sheva, Israel

3. Department of Electrical and Computer Engineering and the Earth and Planetary Image Facility, Ben-Gurion University of the Negev, P.O. Box 653, 84105 Beer-Sheva, Israel

Abstract

Our goal in this work is to demonstrate that detectors behave differently for different images and targets and to propose a novel approach to proper detector selection. To choose the algorithm, we analyze image statistics, the target signature, and the target's physical size, but we do not need any type of ground truth. We demonstrate our ability to evaluate detectors and find the best settings for their free parameters by comparing our results using the following stochastic algorithms for target detection: the constrained energy minimization (CEM), generalized likelihood ratio test (GLRT), and adaptive coherence estimator (ACE) algorithms. We test our concepts by using the dataset and scoring methodology of the Rochester Institute of Technology (RIT) Target Detection Blind Test project. The results show that our concept correctly ranks algorithms for the particular images and targets including in the RIT dataset.

Funder

Rochester Institute of Technology

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,General Computer Science,Signal Processing

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Construction of a Semiautomatic Contour of Areal Objects on Hyperspectral Satellite Images;Pattern Recognition and Image Analysis;2024-06

2. Design and Demonstration of a Lattice-Based Target for Hyperspectral Subpixel Target Detection Experiments;IEEE Transactions on Geoscience and Remote Sensing;2024

3. Mixed and Sub-Pixel Target Detection Using Space Borne Hyper-Spectral Imaging Data: Analysis and Challenges;2023 International Conference on Machine Intelligence for GeoAnalytics and Remote Sensing (MIGARS);2023-01-27

4. Triplet Spectralwise Transformer Network for Hyperspectral Target Detection;IEEE Transactions on Geoscience and Remote Sensing;2023

5. Multiscale-Superpixel-Based SparseCEM for Hyperspectral Target Detection;IEEE Geoscience and Remote Sensing Letters;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3