Nonlinear Finite Element Analysis and Comparison of In-Plane Strength of Circular and Parabolic Arched I-Section Cellular Steel Beam

Author:

Zewudie Besukal Befikadu1ORCID

Affiliation:

1. Faculty of Civil and Environmental Engineering, Jimma Institute of Technology, Jimma University, Jimma, Ethiopia

Abstract

The advancement in steel fabrication technology extends the structural and constructional advantages of cellular steel beams into arched cellular steel structure members. However, less attention is given to understanding the in-plane and out-of-plane structural behavior and performance of arched cellular steel beams. This article presents a numerical study using the finite element package ABAQUS to investigate the effect of arch axis geometry (circular and parabolic) and the impact of end support types on the in-plane inelastic buckling strength and buckling mode of I-section arched cellular steel beams. In the nonlinear finite element analysis of the model material nonlinearity, a second-order effect due to large deformation and initial geometric imperfection was incorporated in predicting inelastic buckling load and buckling mode. Furthermore, finite element analysis results were verified by comparing them to the existing experimental work. Test models covering shallow to deep arches of subtended angle in a range of 45–180 were investigated under uniformly distributed vertical loads and mid-span point loads. It was found that nonlinear finite element results fairly replicate the experimental work in predicting inelastic buckling load and post-buckling behavior. From the parametric investigation, it was found that deep parabolic arched cellular steel beams are structurally more efficient than their equivalent circular arched cellular steel beams. Pinned in-plane and free out-of-plane end support conditions result in a reduced inelastic ultimate buckling load capacity of arched cellular steel members when compared to other possible end support types. The geometry of an arch axis has no noticeable impact on the buckling mode of arched cellular steel beams.

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Reference35 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3