Mechanical Fault Diagnosis of an On-Load Tap Changer by Applying Cuckoo Search Algorithm-Based Fuzzy Weighted Least Squares Support Vector Machine

Author:

Gao Shuguo1ORCID,Zhou Cong2ORCID,Zhang Zhigang3,Geng Jianghai4,He Ruidong3,Yin Qingdong1,Xing Chao1

Affiliation:

1. State Grid Hebei Electric Power Research Institute, Shjiazhuang 050021, China

2. State Grid Tianjin Electric Power Company, Tianjin 300010, China

3. State Grid Hebei Electric Power Supply Company Limited, Shjiazhuang 050000, China

4. Hebei Provincial Key Laboratory of Power Transmission Equipment Security Defense, North China Electric Power University, Baoding 071003, China

Abstract

To improve adaptability, feature resolution, and identification accuracy when diagnosing mechanical faults in an on-load tap changer (OLTC) of a transformer, in the present research, wavelet packet energy entropy is used to describe the information comprising vibration signal in the switch process of an OLTC, and a fuzzy weighted least squares support vector machine (CSA-fuzzy weighted LSSVM) model based on the cuckoo search algorithm is proposed to identify mechanical fault types. Specifically, according to the different importance of the sample data in different periods, the idea of fuzzy weighting of training samples is proposed. The cuckoo search algorithm is used to optimise regularisation parameters, kernel function width, and weight control factor of CSA-fuzzy weighted LSSVM. Finally, the real experimental platform for typical mechanical faults of an OLTC is established, and the vibration signals of several typical mechanical faults under different degrees of fatigue are obtained. The results show that the new method achieves a higher accuracy rate of fault identification compared with other common methods. It can better deal with small sample and nonlinear prediction problems and shows higher fitting accuracy than CSA-LSSVM, single LSSVM, and radial basis neural network methods and is thus better suited for mechanical fault diagnosis in OLTCs. This paper presents a new intelligent diagnosis scheme for mechanical faults of on-load tap changers, which can achieve noninterruption and nonintrusive detection. The proposed diagnosis method would change the traditional diagnosis method of the on-load tap changer and improves the power supply quality and the detection efficiency under the premise of ensuring the safety of the staff.

Funder

State Grid Corporation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3