High Levels of Vitamin A in Plant-Based Diets for Gilthead Seabream (Sparus aurata) Juveniles, Effects on Growth, Skeletal Anomalies, Bone Molecular Markers, and Histological Morphology

Author:

Dominguez David1ORCID,Montero Daniel1ORCID,Zamorano Maria Jesus1ORCID,Castro Pedro L.1ORCID,da Silva Joseane2,Fontanillas Ramon3ORCID,Izquierdo Marisol1ORCID

Affiliation:

1. Aquaculture Research Group (GIA), University Institute of Sustainable Aquaculture and Marine Ecosystems (IU-ECOAQUA), University of Las Palmas de Gran Canaria, Road to Taliarte, 35200, Telde, Gran Canaria, Spain

2. Laboratory of Metabolism and Reproduction of Aquatic Organisms (LAMEROA), Department of Physiology, Institute of Biosciences, USP, Matão street, São Paulo, Brazil

3. Skretting Aquaculture Research Centre AS, PO Box 48, N-4001, Stavanger, Norway

Abstract

Substitution of fish-based ingredients may alter the nutritional profile of the feeds, including the vitamin contents, ultimately leading to unbalanced vitamin supply. Vitamin A plays an essential role in epithelium preservation, cell differentiation, reproduction, and vision. It also intervenes in skeletogenesis through chondrocytes development. Therefore, low levels of vitamin A may cause poor growth and abnormal bone development among other symptoms. Besides, in gilthead seabream excess vitamin A altered bone structure and homeostasis, indicating that an upper level for vitamin A in feeds for this species must be defined. For this purpose, a practical plant-based diet (FM 10% and FO 6%) containing five increasing levels of vitamin A (24,000, 26,000, 27,000, 31,000, and 37,000 IU/kg) supplemented as retinyl acetate was formulated to identify the effects of high levels of vitamin A for gilthead seabream juveniles. The trial was conducted with 450 total fish distributed into 15 tanks, where each diet was tested in triplicates for 70 days. At the end of the trial, samples were taken for analyses of vitamin A—relevant markers. At the end of the trial the high levels of vitamin A supplementation did not cause a reduction in growth, whereas no significant effect was observed for the feed efficiency, specific growth rate, and feed convertion ratio. Although not significant, retinol content in liver showed a tendency to increase with the elevation of dietary vitamin A levels. Although minor, the highest level of vitamin A dietary content (37,000 IU/kg) caused a significant increase in caudal vertebrae partial fusion as well as caudal vertebrae malformations. Increasing dietary vitamin A was related to a reduction in the occurrence of microhemorrhages in the liver and a reduction in the presence of eosinophils associated to the pancreas. Overall, the results of the present study suggested that gilthead seabream juveniles fed a plant-based diet are able to tolerate very high levels of vitamin A supplementation when supplemented as retinyl acetate. Nevertheless, further supplementation should be avoided in order to reduce the prevalence of anomalies affecting the caudal vertebrae.

Funder

Horizon 2020 Framework Programme

Publisher

Hindawi Limited

Subject

Aquatic Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3