Total Organic Carbon Content Prediction in Lacustrine Shale Using Extreme Gradient Boosting Machine Learning Based on Bayesian Optimization

Author:

Liu Xingzhou1,Tian Zhi1ORCID,Chen Chang1

Affiliation:

1. Research Institute of Exploration and Development, Liaohe Oilfield Company, Petrochina, Panjin 124010, China

Abstract

The total organic carbon (TOC) content is a critical parameter for estimating shale oil resources. However, common TOC prediction methods rely on empirical formulas, and their applicability varies widely from region to region. In this study, a novel data-driven Bayesian optimization extreme gradient boosting (XGBoost) model was proposed to predict the TOC content using wireline log data. The lacustrine shale in the Damintun Sag, Bohai Bay Basin, China, was used as a case study. Firstly, correlation analysis was used to analyze the relationship between the well logs and the core-measured TOC data. Based on the degree of correlation, six logging curves reflecting TOC content were selected to construct training dataset for machine learning. Then, the performance of the XGBoost model was tested using K -fold cross-validation, and the hyperparameters of the model were determined using a Bayesian optimization method to improve the search efficiency and reduce the uncertainty caused by the rule of thumb. Next, through the analysis of prediction errors, the coefficient of determination ( R 2 ) of the TOC content predicted by the XGBoost model and the core-measured TOC content reached 0.9135. The root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE) were 0.63, 0.77, and 12.55%, respectively. In addition, five commonly used methods, namely, Δ log R method, random forest, support vector machine, K -nearest neighbors, and multiple linear regression, were used to predict the TOC content to confirm that the XGBoost model has higher prediction accuracy and better robustness. Finally, the proposed approach was applied to predict the TOC curves of 20 exploration wells in the Damintun Sag. We obtained quantitative contour maps of the TOC content of this block for the first time. The results of this study facilitate the rapid detection of the sweet spots of the lacustrine shale oil.

Funder

China National Petroleum Corporation

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3