Novel Browning Agents, Mechanisms, and Therapeutic Potentials of Brown Adipose Tissue

Author:

Wankhade Umesh D.12ORCID,Shen Michael3,Yadav Hariom4,Thakali Keshari M.12

Affiliation:

1. Arkansas Children’s Nutrition Center, Little Rock, AR, USA

2. Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA

3. Duke University, Durham, NC, USA

4. Diabetes, Endocrinology, and Obesity Branch, National Institutes of Health, Bethesda, MD, USA

Abstract

Nonshivering thermogenesis is the process of biological heat production in mammals and is primarily mediated by brown adipose tissue (BAT). Through ubiquitous expression of uncoupling protein 1 (Ucp1) on the mitochondrial inner membrane, BAT displays uncoupling of fuel combustion and ATP production in order to dissipate energy as heat. Because of its crucial role in regulating energy homeostasis, ongoing exploration of BAT has emphasized its therapeutic potential in addressing the global epidemics of obesity and diabetes. The recent appreciation that adult humans possess functional BAT strengthens this prospect. Furthermore, it has been identified that there are both classical brown adipocytes residing in dedicated BAT depots and “beige” adipocytes residing in white adipose tissue depots that can acquire BAT-like characteristics in response to environmental cues. This review aims to provide a brief overview of BAT research and summarize recent findings concerning the physiological, cellular, and developmental characteristics of brown adipocytes. In addition, some key genetic, molecular, and pharmacologic targets of BAT/Beige cells that have been reported to have therapeutic potential to combat obesity will be discussed.

Funder

U.S. Department of Agriculture

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3