Optical Flow Inversion for Remote Sensing Image Dense Registration and Sensor's Attitude Motion High-Accurate Measurement

Author:

Wang Chong12,You Zheng12,Xing Fei12,Zhao Borui12,Li Bin12,Zhang Gaofei12,Tao Qingchang12

Affiliation:

1. Department of Precision Instrument, Tsinghua University, Beijing 100084, China

2. The State Key Laboratory of Precision Measurement, Technology and Instruments, Tsinghua University, Beijing 100084, China

Abstract

It has been discovered that image motions and optical flows usually become much more nonlinear and anisotropic in space-borne cameras with large field of view, especially when perturbations or jitters exist. The phenomenon arises from the fact that the attitude motion greatly affects the image of the three-dimensional planet. In this paper, utilizing the characteristics, an optical flow inversion method is proposed to treat high-accurate remote sensor attitude motion measurement. The principle of the new method is that angular velocities can be measured precisely by means of rebuilding some nonuniform optical flows. Firstly, to determine the relative displacements and deformations between the overlapped images captured by different detectors is the primary process of the method. A novel dense subpixel image registration approach is developed towards this goal. Based on that, optical flow can be rebuilt and high-accurate attitude measurements are successfully fulfilled. In the experiment, a remote sensor and its original photographs are investigated, and the results validate that the method is highly reliable and highly accurate in a broad frequency band.

Funder

National High Technology Research and Development Program of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3