Self-Navigating UAVs for Supervising Moving Objects over Large-Scale Wireless Sensor Networks

Author:

Van Tien Pham1ORCID,Van Nguyen Pham1ORCID,Duyen Trung Ha2ORCID

Affiliation:

1. Department of Communications Engineering, Hanoi University of Science and Technology, Hanoi 844, Vietnam

2. Department of Aerospace Electronics, Hanoi University of Science and Technology, Hanoi 844, Vietnam

Abstract

Increasingly inexpensive unmanned aerial vehicles (UAVs) are helpful for searching and tracking moving objects in ground events. Previous works either have assumed that data about the targets are sufficiently available, or they solely rely on on-board electronics (e.g., camera and radar) to chase them. In a searching mission, path planning is essentially preprogrammed before taking off. Meanwhile, a large-scale wireless sensor network (WSN) is a promising means for monitoring events continuously over immense areas. Due to disadvantageous networking conditions, it is nevertheless hard to maintain a centralized database with sufficient data to instantly estimate target positions. In this paper, we therefore propose an online self-navigation strategy for a UAV-WSN integrated system to supervise moving objects. A UAV on duty exploits data collected on the move from ground sensors together with its own sensing information. The UAV autonomously executes edge processing on the available data to find the best direction toward a target. The designed system eliminates the need of any centralized database (fed continuously by ground sensors) in making navigation decisions. We employ a local bivariate regression to formulate acquired sensor data, which lets the UAV optimally adjust its flying direction, synchronously to reported data and object motion. In addition, we also construct a comprehensive searching and tracking framework in which the UAV flexibly sets its operation mode. As a result, least communication and computation overhead is actually induced. Numerical results obtained from NS-3 and Matlab cosimulations have shown that the designed framework is clearly promising in terms of accuracy and overhead costs.

Funder

Ministry of Science and Technology

Publisher

Hindawi Limited

Subject

Aerospace Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Drone path planning and dynamic arena-target allocation for crowd surveillance;Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering;2024-05-09

2. Design and development of an I-shaped UAV;IV INTERNATIONAL SCIENTIFIC FORUM ON COMPUTER AND ENERGY SCIENCES (WFCES II 2022);2023

3. Underwater Searching based on AUV - ASV Cooperation;2022 16th International Conference on Ubiquitous Information Management and Communication (IMCOM);2022-01-03

4. Relay UAV-Based FSO Communications over Log-Normal Channels with Pointing Errors;Advances in Intelligent Systems and Computing;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3