Synthesis and Optimization of Deesterified Acacia-Alginate Nanohydrogel for Amethopterin Delivery

Author:

Sathish T.1ORCID,Sabarirajan N.2,Prasad Jones Christydass S.3,Sivananthan S.4,Kamalakannan R.5,Vijayan V.4ORCID,Paramasivam Prabhu6ORCID

Affiliation:

1. Department of Computer Science and Engineering, Saveetha School of Engineering, SIMATS, Chennai 602105, Tamil Nadu, India

2. Department of Mechanical Engineering, Chendhuran College of Engineering and Technology, Pudukkottai, Tamil Nadu, India

3. Department of Electrical and Electronics Engineering, K. Ramakrishnan College of Technology, Tiruchirapalli, Tamil Nadu, India

4. Department of Mechanical Engineering, K.Ramakrishnan College of Engineering, Samayapuram, Tiruchirapalli, Tamil Nadu, India

5. Department of Mechanical Engineering, M. Kumarasamy College of Engineering, Karur, Tamil Nadu, India

6. Department of Mechanical Engineering, College of Engineering and Technology, Mettu University, Metu 318, Ethiopia

Abstract

Naturally obtained materials are preferable for the production of biomedicine in biomedical applications. Acacia gum is has recently become a hopeful one in the biomedicine production due to its excellent properties, namely, emulsifier, stabilizing mediator, suspending agent, etc. In this novel work, we synthesised and characterized the deesterified Acacia gum-alginate nanohydrogel (DEA-AG NPs) as a carrier for amethopterin (ATN) delivery. This combination is used in the drug effectiveness and tissue engineering. In this work, the Taguchi route is implemented for estimating of particle size and zeta potential (mV) through optimization. Following three parameters are considered for this work: DEA solution concentration (0.008, 0.016, 0.024, and 0.032 w/v %), alginate molecular weight (3, 6, 9, and 12 MW), and ATN/DEA ratio (1 : 4, 1 : 8, 1 : 12, and 1 : 16 w/w %). In particle size analysis and zeta potential analysis, the DEA solution concentration is highly influenced. Minimum particle size is found as 148.50 nm. Similarly, maximum zeta potential is identified as 29.5 mV.

Publisher

Hindawi Limited

Subject

Inorganic Chemistry,Organic Chemistry,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3