Predicting Protein-Protein Interactions via Random Ferns with Evolutionary Matrix Representation

Author:

Li Yang1ORCID,Wang Zheng2ORCID,You Zhu-Hong3ORCID,Li Li-Ping4ORCID,Hu Xuegang1ORCID

Affiliation:

1. School of Computer Science and Information Engineering, Hefei University of Technology, Hefei 230601, China

2. School of Information Engineering, Xijing University, Xi’an 710123, China

3. School of Computer Science, Northwestern Polytechnical University, Xi’an Shaanxi 710129, China

4. College of Grassland and Environment Sciences, Xinjiang Agricultural University, Urumqi 830052, China

Abstract

Protein-protein interactions (PPIs) play a crucial role in understanding disease pathogenesis, genetic mechanisms, guiding drug design, and other biochemical processes, thus, the identification of PPIs is of great importance. With the rapid development of high-throughput sequencing technology, a large amount of PPIs sequence data has been accumulated. Researchers have designed many experimental methods to detect PPIs by using these sequence data, hence, the prediction of PPIs has become a research hotspot in proteomics. However, since traditional experimental methods are both time-consuming and costly, it is difficult to analyze and predict the massive amount of PPI data quickly and accurately. To address these issues, many computational systems employing machine learning knowledge were widely applied to PPIs prediction, thereby improving the overall recognition rate. In this paper, a novel and efficient computational technology is presented to implement a protein interaction prediction system using only protein sequence information. First, the Position-Specific Iterated Basic Local Alignment Search Tool (PSI-BLAST) was employed to generate a position-specific scoring matrix (PSSM) containing protein evolutionary information from the initial protein sequence. Second, we used a novel data processing feature representation scheme, MatFLDA, to extract the essential information of PSSM for protein sequences and obtained five training and five testing datasets by adopting a five-fold cross-validation method. Finally, the random fern (RFs) classifier was employed to infer the interactions among proteins, and a model called MatFLDA_RFs was developed. The proposed MatFLDA_RFs model achieved good prediction performance with 95.03% average accuracy on Yeast dataset and 85.35% average accuracy on H. pylori dataset, which effectively outperformed other existing computational methods. The experimental results indicate that the proposed method is capable of yielding better prediction results of PPIs, which provides an effective tool for the detection of new PPIs and the in-depth study of proteomics. Finally, we also developed a web server for the proposed model to predict protein-protein interactions, which is freely accessible online at http://120.77.11.78:5001/webserver/MatFLDA_RFs.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3