An Innovative Machine Learning Approach for Classifying ECG Signals in Healthcare Devices

Author:

B Kishore1,Gopal Reddy A. Nanda2ORCID,Kumar Chillara Anila3,Hatamleh Wesam Atef4,Haouam Kamel Dine4,Verma Rohit5,Dhevi B. Lakshmi6,Atiglah Henry Kwame7ORCID

Affiliation:

1. Department of Computer Science and Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India

2. Mahaveer Institute of Science and Technology, Hyderabad, India

3. Birla Institute of Technology & Science, Hyderabad, India

4. Department of Computer Science, College of Computer and Information Sciences, King Saud University, P. O. Box 51178, Riyadh 11543, Saudi Arabia

5. School of Electronics, Dublin City University, Dublin, Ireland

6. Institute of Artificial Intelligence and Machine Learning, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India

7. Department of Electrical & Electronics Engineering, Tamale Technical University, Tamale, Ghana

Abstract

An ECG is a diagnostic technique that examines and records the heart’s electrical impulses. It is easy to categorise and prevent computational abstractions in the ECG signal using the conventional method for obtaining ECG features. It is a significant issue, but it is also a difficult and time-consuming chore for cardiologists and medical professionals. The proposed classifier eliminates all of the following limitations. Machine learning in healthcare equipment reduces moral transgressions. This study’s primary purpose is to calculate the R-R interval and analyze the blockage utilising simple algorithms and approaches that give high accuracy. The MIT-BIH dataset may be used to rebuild the data. The acquired data may include both normal and abnormal ECGs. A Gabor filter is employed to generate a noiseless signal, and DCT-DOST is used to calculate the signal’s amplitude. The amplitude is computed to detect any cardiac anomalies. A genetic algorithm derives the main highlights from the R peak and cycle segment length underlying the ECG signal. So, combining data with specific qualities maximises identification. The genetic algorithm aids in hereditary computations, which aids in multitarget improvement. Finally, Radial Basis Function Neural Network (RBFNN) is presented as an example. An efficient feedforward neural network lowers the number of local minima in the signal. It shows progress in identifying both normal and abnormal ECG signals.

Funder

King Saud University

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3