Arsenic Primes Human Bone Marrow CD34+ Cells for Erythroid Differentiation

Author:

Zhang Yuanyuan12ORCID,Wang Shasha1,Chen Chunyan3,Wu Xiao1,Zhang Qunye1,Jiang Fan1ORCID

Affiliation:

1. Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, Shandong 250012, China

2. Department of Oncology and Pathology (CCK), R8:03, Karolinska University Hospital, Solna, 17176 Stockholm, Sweden

3. Department of Hematology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, China

Abstract

Arsenic trioxide exhibits therapeutic effects on certain blood malignancies, at least partly by modulating cell differentiation. Previousin vitrostudies in human hematopoietic progenitor cells have suggested that arsenic may inhibit erythroid differentiation. However, these effects were all observed in the presence of arsenic compounds, while the concomitant cytostatic and cytotoxic actions of arsenic might mask a prodifferentiating activity. To eliminate the potential impacts of the cytostatic and cytotoxic actions of arsenic, we adopted a novel protocol by pretreating human bone marrow CD34+ cells with a low, noncytotoxic concentration of arsenic trioxide, followed by assaying the colony forming activities in the absence of the arsenic compound. Bone marrow specimens were obtained from chronic myeloid leukemia patients who achieved complete cytogenetic remission. CD34+ cells were isolated by magnetic-activated cell sorting. We discovered that arsenic trioxide enhanced the erythroid colony forming activity, which was accompanied by a decrease in the granulomonocytic differentiation function. Moreover, in erythroleukemic K562 cells, we showed that arsenic trioxide inhibited erythrocyte maturation, suggesting that arsenic might have biphasic effects on erythropoiesis. In conclusion, our data provided the first evidence showing that arsenic trioxide could prime human hematopoietic progenitor cells for enhanced erythroid differentiation.

Funder

National Basic Research Program of China

Publisher

Hindawi Limited

Subject

Inorganic Chemistry,Organic Chemistry,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3