An Object-Oriented Framework for Versatile Finite Element Based Simulations of Neurostimulation

Author:

Dougherty Edward T.1,Turner James C.2

Affiliation:

1. Mathematics Department, Rowan University, Glassboro, NJ 08028, USA

2. Mathematics Department, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA

Abstract

Computational simulations of transcranial electrical stimulation (TES) are commonly utilized by the neurostimulation community, and while vastly different TES application areas can be investigated, the mathematical equations and physiological characteristics that govern this research are identical. The goal of this work was to develop a robust software framework for TES that efficiently supports the spectrum of computational simulations routinely utilized by the TES community and in addition easily extends to support alternative neurostimulation research objectives. Using well-established object-oriented software engineering techniques, we have designed a software framework based upon the physical and computational aspects of TES. The framework’s versatility is demonstrated with a set of diverse neurostimulation simulations that (i) reinforce the importance of using anisotropic tissue conductivities, (ii) demonstrate the enhanced precision of high-definition stimulation electrodes, and (iii) highlight the benefits of utilizing multigrid solution algorithms. Our approaches result in a framework that facilitates rapid prototyping of real-world, customized TES administrations and supports virtually any clinical, biomedical, or computational aspect of this treatment. Software reuse and maintainability are optimized, and in addition, the same code can be effortlessly augmented to provide support for alternative neurostimulation research endeavors.

Funder

Virginia Tech’s Open Access Subvention Fund

Publisher

Hindawi Limited

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3