A Machine Learning Study on the Thermostability Prediction of (R)-ω-Selective Amine Transaminase from Aspergillus terreus

Author:

Jia Li-li1,Sun Ting-ting1ORCID,Wang Yan1,Shen Yu1ORCID

Affiliation:

1. School of Science, School of Big Data, Zhejiang University of Science and Technology, Hangzhou 310008, China

Abstract

Artificial intelligence technologies such as machine learning have been applied to protein engineering, with unique advantages in protein structure, function prediction, catalytic activity, and other issues in recent years. Screening better mutants is still a bottleneck in protein engineering. In this paper, a new sequence-activity relationship method was analyzed for its application in improving the thermal stability of Aspergillus terreus (R)-ω-selective amine transaminase. The experimental data from 6 single-point mutated enzymes were used as a learning dataset to build models and predict the thermostability of 26 mutants. Based on digital signal processing (DSP), this method digitized the amino acid sequence of proteins by fast Fourier transform (FFT) and then established the best model applying partial least squares regression (PLSR) to screen out all possible mutants, especially those with high performance. In protein engineering, the innovative sequence activity relationship (ISAR) method can make a reasonable prediction using limited experimental data and significantly reduce the experimental cost. The half-life ( T 1 / 2 ) of (R)-ω-transaminase was fitted with the amino acid sequence by the ISAR algorithm, resulting in an R 2 of 0.8929 and a cvRMSE of 4.89. At the same time, the mutants with higher T 1 / 2 than the existing ones were predicted, laying the groundwork for better (R)-ω-transaminase in the later stage. The ISAR algorithm is expected to provide a new technique for protein evolution and screening.

Funder

Natural Science Foundation of Zhejiang Province

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3