A Novel Insight into the Role of PLA2R and THSD7A in Membranous Nephropathy

Author:

Zhang Pingna12ORCID,Huang Weijun2,Zheng Qiyan12,Tang Jingyi12,Dong Zhaocheng12ORCID,Jiang Yuhua12,Liu Yuning12ORCID,Liu Weijing123ORCID

Affiliation:

1. Renal Research Institution of Beijing University of Chinese Medicine, Beijing, China

2. Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China

3. Institute of Nephrology, and Zhanjiang Key Laboratory of Prevention and Management of Chronic Kidney Disease, Guangdong Medical University, Zhanjiang, China

Abstract

Membranous nephropathy (MN) is an organ-restricted autoimmune disease mainly caused by circulating autoantibodies against podocyte antigens, including the M-type phospholipase A2 receptor (PLA2R) and thrombospondin domain-containing 7A (THSD7A). Antibodies against PLA2R are present in 70%–80% and against THSD7A in 2% of adult patients, which provides a paradigm shift in molecular diagnosis and management monitoring. Both antigens share some similar characteristics: they are expressed by podocytes and have wide tissue distributions; they are bound by autoantibodies only under nonreducing conditions, and the subtype of most autoantibodies is IgG4. However, the factors triggering autoantibody production as well as the association among air pollution, malignancy, and the pathogenesis of MN remain unclear. In this review, we discuss the similarity between the pathological mechanisms triggered by disparate antigens and their associated diseases. Furthermore, we demonstrated the possibility that PM2.5, malignancy, and gene expression specifically induce exposure of these antigens through conformational changes, molecular mimicry, or increased expression eliciting autoimmune responses. Thus, this review provides novel insights into the pathological mechanism of MN.

Funder

Horizontal Subject

Publisher

Hindawi Limited

Subject

Immunology,General Medicine,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3