Performance of Geosynthetic-Reinforced and Cement-Fly Ash-Gravel Pile-Supported Embankments over Completely Decomposed Granite Soil: A Case Study

Author:

Wu Lijun1ORCID

Affiliation:

1. College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu 610031, China

Abstract

This paper presents a full-scale test of the high-speed railway embankment to investigate the performance of cement-fly ash-gravel (CFG) pile-supported embankments over completely decomposed granite (CDG) soils. The authors compared the embankments built on CDG soils reinforced by geogrid only and geogrid and CFG piles in terms of ground settlement, layer settlement, and pile efficacy. Experimental results show that the CFG pile-supported embankment built on CDG soils performs well. The soil arching of CFG piled reinforcement is effective and significantly increases with surrounding soil consolidation. Furthermore, the increase in the soil arching effect is heavily dependent on differential settlements between surrounding soils and piles. Five methods widely adopted in current designing were used to calculate the pile efficacy. The prediction for pile efficacy by the Nordic method, BS8006, and its modified version is significantly higher than measured values. By contrast, the calculation by the EBGEO and CA model method is more approximate to the measured results in both the pattern and the value at the end of construction. Therefore, the adaptability of the EBGEO and CA model method outperformed that of the Nordic method, BS8006, and its modified version. Finally, in this case, the CA model method was recommended to estimate the pile efficacy of CFG pile-supported embankments built on CDG soils.

Funder

Ministry of Railways

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3