Affiliation:
1. Department of Mathematics, University of Kashmir, South Campus, Anantnag, Jammu and Kashmir 192101, India
Abstract
We present a notion of frame multiresolution analysis on local fields of positive characteristic based on the theory of shift-invariant spaces. In contrast to the standard setting, the associated subspace V0 of L2(K) has a frame, a collection of translates of the scaling function φ of the form φ(·-u(k)):k∈N0, where N0 is the set of nonnegative integers. We investigate certain properties of multiresolution subspaces which provides the quantitative criteria for the construction of frame multiresolution analysis (FMRA) on local fields of positive characteristic. Finally, we provide a characterization of wavelet frames associated with FMRA on local field K of positive characteristic using the shift-invariant space theory.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献