Multi-GPU Support on Single Node Using Directive-Based Programming Model

Author:

Xu Rengan1,Tian Xiaonan1,Chandrasekaran Sunita1,Chapman Barbara1

Affiliation:

1. Department of Computer Science, University of Houston, Houston, TX 77004, USA

Abstract

Existing studies show that using single GPU can lead to obtaining significant performance gains. We should be able to achieve further performance speedup if we use more than one GPU. Heterogeneous processors consisting of multiple CPUs and GPUs offer immense potential and are often considered as a leading candidate for porting complex scientific applications. Unfortunately programming heterogeneous systems requires more effort than what is required for traditional multicore systems. Directive-based programming approaches are being widely adopted since they make it easy to use/port/maintain application code. OpenMP and OpenACC are two popular models used to port applications to accelerators. However, neither of the models provides support for multiple GPUs. A plausible solution is to use combination of OpenMP and OpenACC that forms a hybrid model; however, building this model has its own limitations due to lack of necessary compilers’ support. Moreover, the model also lacks support for direct device-to-device communication. To overcome these limitations, an alternate strategy is to extend OpenACC by proposing and developing extensions that follow a task-based implementation for supporting multiple GPUs. We critically analyze the applicability of the hybrid model approach and evaluate the proposed strategy using several case studies and demonstrate their effectiveness.

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Reference16 articles.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Accelerated CFD computations on multi-GPU using OpenMP and OpenACC;Sādhanā;2024-02-22

2. Accelerated CFD Computations on Multi-GPU Using OpenMP and OpenACC;Lecture Notes in Mechanical Engineering;2024

3. Data mapping strategies for multi-GPU implementation of a seismic application;Anais do XXIV Simpósio em Sistemas Computacionais de Alto Desempenho (SSCAD 2023);2023-10-17

4. Feasibility Studies in Multi-GPU Target Offloading;OpenMP in a Modern World: From Multi-device Support to Meta Programming;2022

5. Performance Characteristics of Virtualized GPUs for Deep Learning;2020 IEEE/ACM International Workshop on Interoperability of Supercomputing and Cloud Technologies (SuperCompCloud);2020-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3