Affiliation:
1. School of Automation, Huazhong University of Science and Technology, Wuhan 430074, China
2. Key Laboratory of Ministry of Education for Image Processing and Intelligent Control of China, Wuhan 430074, China
Abstract
The existing opinion dynamics models mainly concentrate on the impact of opinions on other opinions and ignore the effect of the social similarity between individuals. Social similarity between an individual and their neighbors will also affect their opinions in real life. Therefore, an opinion evolution model considering social similarity (social-similarity-based HK model, SSHK model for short) is introduced in this paper. Social similarity is calculated using individual properties and is used to measure the social relationship between individuals. By considering the joint effect of confidence bounds and social similarity in this model, the role of neighbors’ selection is changed significantly in the process of the evolution of opinions. Numerical results demonstrate that the new model can not only obtain the salient features of the opinion result, namely, fragmentation, polarization, and consensus, but also achieve consensus more easily under the appropriate similarity threshold. In addition, the improved model with heterogeneous and homogeneous confidence bounds and similarity thresholds are also discussed. We found that the improved heterogeneous SSHK model could acquire opinion consensus results more easily than the homogeneous SSHK model and the classical models when the confidence bound was related to the similarity threshold. This finding provides a new way of thinking and a theoretical basis for the guidance of public opinion in real life.
Funder
National Natural Science Foundation of China
Subject
Multidisciplinary,General Computer Science
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献