Cloud Model-Based Artificial Immune Network for Complex Optimization Problem

Author:

Wang Mingan1,Feng Shuo2ORCID,Li Jianming3,Li Zhonghua3ORCID,Xue Yu4ORCID,Guo Dongliang5

Affiliation:

1. School of Information Science and Technology, Huizhou University, Huizhou 516007, China

2. School of Electronic Information and Electrical Engineering, Huizhou University, Huizhou 516007, China

3. School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China

4. School of Computer and Software, Nanjing University of Information Science & Technology, Nanjing 210044, China

5. Public Experimental Teaching Center, Sun Yat-sen University, Guangzhou 510006, China

Abstract

This paper proposes an artificial immune network based on cloud model (AINet-CM) for complex function optimization problems. Three key immune operators—cloning, mutation, and suppression—are redesigned with the help of the cloud model. To be specific, an increasing half cloud-based cloning operator is used to adjust the dynamic clone multipliers of antibodies, an asymmetrical cloud-based mutation operator is used to control the adaptive evolution of antibodies, and a normal similarity cloud-based suppressor is used to keep the diversity of the antibody population. To quicken the searching convergence, a dynamic searching step length strategy is adopted. For comparative study, a series of numerical simulations are arranged between AINet-CM and the other three artificial immune systems, that is, opt-aiNet, IA-AIS, and AAIS-2S. Furthermore, two industrial applications—finite impulse response (FIR) filter design and proportional-integral-differential (PID) controller tuning—are investigated and the results demonstrate the potential searching capability and practical value of the proposed AINet-CM algorithm.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3