Optimal Adaptive Fractional Order Integral Sliding Mode Controller-Energy Management Strategy for Electric Vehicles Based on Bald Eagle Search Algorithm

Author:

Ghadbane Houssam Eddine1,Barkat Said2,Houari Azeddine3,Djerioui Ali2,Rezk Hegazy4,Louzazni Mohamed5ORCID

Affiliation:

1. Laboratoire de Génie Électrique de Guelma (LGEG), Département de Génie Electrotechnique et Automatique, Université 8 Mai 1945, B.P.401, Guelma 24000, Algeria

2. University of M’sila, Electrical Engineering Laboratory, Electrical Engineering Department, Algeria

3. Institut de Recherche en Énergie Électrique de Nantes Atlantique, IREENA, Nantes Université, 44600 Saint-Nazaire, France

4. Department of Electrical Engineering, College of Engineering in Wadi Alddawasir, Prince Sattam bin Abdulaziz University, Saudi Arabia

5. Science Engineer Laboratory for Energy, National School of Applied Sciences, Chouaib Doukkali University of El Jadida, El Jadida, Morocco

Abstract

This research presents an optimal energy management system (EMS) for a lithium-ion battery-supercapacitor hybrid storage system used to power an electric vehicle. The storage systems are connected in parallel to the DC bus by bidirectional DC-DC converters and feed a synchronous reluctance motor through an inverter. The proposed energy management strategy is built on the idea to take full benefits of two combined methods: the bald eagle search algorithm and fractional order integral sliding mode control. To evaluate the effectiveness of the suggested optimal energy management strategy, an urban dynamometer driving schedule (UDDS) driving cycle is considered. The obtained results are compared to a classical fractional order integral sliding mode control-based energy management strategy in terms of voltage ripples, overshoots, and battery final state of charge. The ultimate results approve the ability of the proposed energy management system to enhance the power quality and enhance battery power consumption at the same time. Comprehensive processor-in-the-loop (PIL) cosimulations were conducted on the electric vehicle using the C2000 launchxl-f28379d digital signal processing (DSP) board to assess the practicability and effectiveness of the proposed EMS.

Publisher

Hindawi Limited

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3