Gait-Specific Optimization of Composite Footwear Midsole Systems, Facilitated through Dynamic Finite Element Modelling

Author:

Drougkas Dimitris1,Karatsis Evagelos1,Papagiannaki Maria2,Chatzimoisiadis Serafeim1,Arabatzi Fotini2,Maropoulos Stergios3,Tsouknidas Alexander3ORCID

Affiliation:

1. BETA CAE Systems S.A., 54005 Thessaloniki, Greece

2. Department of Physical Education and Sport Science, Aristotle University of Thessaloniki, Ag. Ioannis, 62122 Serres, Greece

3. Department of Mechanical Engineering & Industrial Design, Technical University of Western Macedonia, Koila, 50100 Kozani, Greece

Abstract

Objective. During the last century, running shoes have been subject to drastic changes with incremental however improvements as to injury prevention. This may be, among others, due to the limited insight that experimental methodologies can provide on their 3D in situ response. The objective of this study was to demonstrate the effectiveness of finite element (FE) modelling techniques, in optimizing a midsole system as to the provided cushioning capacity. Methods. A commercial running shoe was scanned by means of micro computed tomography and its gel-based midsole, reverse-engineered to a 200 μm accuracy. The resulting 3D model was subjected to biorealistic loading and boundary conditions, in terms of time-varying plantar pressure distribution and shoe-ground contact constraints. The mesh grid of the FE model was verified as to its conceptual soundness and validated against velocity-driven impact tests. Nonlinear material properties were assigned to all entities and the model subjected to a dynamic FE analysis. An optimization function (based on energy absorption criteria) was employed to determine the optimum gel volume and position, as to accommodate sequential cushioning in the rear-, mid-, and forefoot, of runner during stance phase. Results. The in situ developing stress fields suggest that the shock dissipating properties of the midsole could be significantly improved. Altering the position of the gel pads and varying their volume led to different midsole responses that could be tuned more efficiently to the specific strike and pronation pattern. Conclusions. The results suggest that midsole design can be significantly improved through biorealistic FE modelling, thus providing a new platform for the conceptual redesign and/or optimization of modern footwear.

Funder

European Social Fund

Publisher

Hindawi Limited

Subject

Biomedical Engineering,Bioengineering,Medicine (miscellaneous),Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3