Upper Bounds on Performance Measures of Heterogeneous Queues

Author:

Alves F. S. Q.1,Yehia H. C.1,Pedrosa L. A. C.2,Cruz F. R. B.3ORCID,Kerbache Laoucine4

Affiliation:

1. Centro de Estudos da Fala, Acústica, Linguagem e músicA, Departamento de Engenharia Eletrônica, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil

2. Fundação Dom Cabral, 30140-083 Belo Horizonte, MG, Brazil

3. Departamento de Estatística, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil

4. Department of OMIT and the Research Center GREGHEC, HEC School of Management, 78351 Paris, France

Abstract

In many real-life queueing systems, the servers are often heterogeneous, namely they work at different rates. This paper provides a simple method to compute tight upper bounds on two important performance measures of single-class heterogeneous multi-server Markovian queueing systems, namely the average number in queue and the average waiting time in queue. This method is based on an expansion of the state space that is followed by an approximate reduction of the state space, only considering the most probable states. In most cases tested, we were able to approximate the actual behavior of the system with smaller errors than those obtained from traditional homogeneous multiserver Markovian queues, as shown by GPSS simulations. In addition, we have correlated the quality of the approximation with the degree of heterogeneity of the system, which was evaluated using its Gini index. Finally, we have shown that the bounds are robust and still useful, even considering quite different allocation strategies. A large number of simulation results show the accuracy of the proposed method that is better than that of classical homogeneous multiserver Markovian formulae in many situations.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3