Investigation of the Larvicidal Potential of Silver Nanoparticles againstCulex quinquefasciatus: A Case of a Ubiquitous Weed as a Useful Bioresource

Author:

Adesuji Elijah T.1,Oluwaniyi Omolara O.2,Adegoke Haleemat I.3,Moodley Roshila4,Labulo Ayomide H.14,Bodede Olusola S.4,Oseghale Charles O.1

Affiliation:

1. Department of Chemistry, Federal University Lafia, PMB 146, Lafia, Nigeria

2. Department of Industrial Chemistry, University of Ilorin, Ilorin, Nigeria

3. Department of Chemistry, University of Ilorin, Ilorin, Nigeria

4. School of Chemistry, University of KwaZulu-Natal, Westville Campus, Durban, South Africa

Abstract

Biosynthesized silver nanoparticles (AgNPs) usingCassia hirsutaaqueous leaf extract were reported in this study. The synthesis was optimized by measuring various parameters such as temperature, time, volume ratio, and concentration. The surface plasmon resonance at 440 nm for 30°C and 420 nm for both 50°C and 70°C measured using the UV-Vis spectrophotometer confirmed the formation of AgNPs synthesized usingC.hirsuta(CAgNPs). The functional groups responsible for the reduction and stabilization of the NPs were identified using Fourier Transform Infrared (FTIR). The morphology, size, and elemental composition of the NPs were obtained using scanning electron microscope (SEM), transmission electron microscope (TEM), and energy dispersive X-ray spectroscopy (EDX). X-ray diffractometer was used to identify the phases and crystallinity of CAgNPs. Crystalline spherical NPs with average diameter of 6.9 ± 0.1 nm were successfully synthesized. The thermal analysis of CAgNPs was observed from DSC-TGA. The larvicidal results against the different larva instar stage ofCulex quinquefasciatusgave LC50= 4.43 ppm and LC90= 8.37 ppm. This is the first study on the synthesis of AgNPs usingC.hirsutaand its application against lymphatic filariasis vector. Hence, it is suggested that theC.hirsutasynthesized AgNPs would be environmentally benign in biological control of mosquito.

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3